Package index
-
ColouredNoise
- Coloured noise data
-
RNG
- Random Number Sequences
-
SWtestE()
- Small World test
-
ac_win()
- Windowed autocorrelation function
-
add_alpha()
- Add transparency to a colour
-
as.numeric_character()
- Character vector to named numeric vector
-
as.numeric_discrete()
- Discrete (factor or character) to numeric vector
-
as.numeric_factor()
- Numeric factor to numeric vector
-
bandReplace()
- Replace matrix diagonals
-
checkPkg()
- Check package
-
createCorridor()
- Corridor analysis
-
dc_ccp()
- Cumulative Complexity Peaks (CCP)
-
dc_d()
- Distribution Uniformity
-
dc_f()
- Fluctuation Intensity
-
dc_win()
- Dynamic Complexity
-
eig_win()
- Windowed Eigenvalue (PCA)
-
elascer()
- Elastic Scaler - A Flexible Rescale Function
-
est_emDim()
- Estimate number of embedding dimensions
-
est_emLag()
- Estimate embedding lag (tau)
-
est_maxPhases()
- Estimate the maximum number of Phases
-
est_parameters()
- Estimate RQA parameters
-
est_radius()
- Estimate Radius.
-
est_radius_rqa()
- Estimate Radius without building a recurrence matrix
-
fd_RR()
- Relative Roughness
-
fd_allan()
- Allan Variance Analysis
-
fd_boxcount2D()
- 2D Boxcount for 1D signal
-
fd_dfa()
- Detrended Fluctuation Analysis (DFA)
-
fd_mfdfa()
- Multi-fractal Detrended Fluctuation Analysis
-
fd_psd()
- Power Spectral Density Slope (PSD).
-
fd_sda()
- Standardised Dispersion Analysis (SDA).
-
fd_sev()
- Calculate FD using Sevcik's method
-
flight_Cauchy()
- Create Cauchy Flight
-
flight_LevyPareto()
- Create a Levy-Pareto flight
-
flight_Rayleigh()
- Create Rayleigh Flight (Brownian Motion)
-
fnn()
- False Nearest Neighbours
-
getColours()
- Get some nice colours
-
getPairs()
- Get all combinations
-
get_os()
- Which OS is running?
-
growth_ac()
- Examples of dynamical growth models (maps)
-
growth_ac_cond()
- Examples of conditional dynamical growth models (maps)
-
inf_MSE()
- Multi-Scale Entropy
-
inf_SampEn()
- Sample Entropy
-
irn_crossClustering()
- Cross CLustering Coefficient
-
irn_crossDegree()
- Cross Degree
-
irn_crossTriples()
- Cross Triples
-
irn_plot()
- Inter system recurrence networks
-
is.date()
- It's a Date!
-
layout_as_spiral()
- Layout a graph on a spiral
-
lv_Ndim()
- Lotka-Volterra model for N species
-
make_spiral_graph()
- Make Spiral Graph
-
manyAnalystsESM
- Data from the Many Analysts study.
-
mat_coursegrain()
- Course grain a matrix for plotting
-
mat_di2bi()
- Distance to binary matrix
-
mat_di2ch()
- Distance to chromatic matrix
-
mat_di2we()
- Distance to weighted matrix
-
mat_hamming()
- Calculate Hamming distance
-
mat_ind()
- Get indices of matrix diagonals, rows, or columns
-
mat_mat2ind()
- Matrix to indexed data frame
-
mat_nodeDegree()
- Matrix node degree
-
mat_we2bi()
- Weighted to Binary matrix
-
mi_interlayer()
- Inter-layer mutual information
-
mi_mat()
- Mutual Information variations
-
mif()
- Mutual Information Function
-
mrn()
- Multiplex Recurrence Network
-
mrn_plot()
- Multiplex Recurrence Network Plot
-
noise_fBm()
- Generate fractional Brownian motion
-
noise_fGn()
- Generate fractional Gaussian noise
-
noise_powerlaw()
- Generate noise series with power law scaling exponent
-
plotDC_ccp()
- Plot Cumulative Complexity Peaks
-
plotDC_lvl()
- Plot Peaks versus Levels
-
plotDC_res()
- Plot Complexity Resonance Diagram
-
plotFD_loglog()
- Plot output from fluctuation analyses based on log-log regression
-
plotMRN_win()
- Plot windowed Multiplex Recurrence Network measures
-
plotNET_BA()
- Example of Barabasi scale-free network
-
plotNET_SW()
- Example of Strogatz-Watts small-world network
-
plotNET_groupColour()
- Vertex and Edge Group Colours
-
plotNET_groupWeight()
- Set Edge weights by group
-
plotNET_prep()
- Plot Network Based on RQA
-
plotRED_acf()
- Plot ACF and PACF
-
plotRED_mif()
- Plot various MI functions
-
plotRN_phaseDensity()
- Phase Density for each dimension
-
plotRN_phaseProfile()
- Profile Plot
-
plotRN_phaseProjection()
- Plot Phase Space Projection
-
plotRN_phaseSeries()
- Phase Series plot
-
plotSUR_hist()
- Surrogate Test
-
plotTS_multi()
- Plot Multivariate Time Series Data
-
repmat()
- Repeat Copies of a Matrix
-
rn()
- Create a Recurrence Network Matrix
-
rn_measures()
- Recurrence Network Measures
-
rn_phases()
- Extract Phases from weighted RN
-
rn_plot()
- Plot (thresholded) distance matrix as a network
-
rn_recSpec()
- Recurrence Time Spectrum
-
rn_strengthDist()
- Strength versus Degree scaling relation
-
rn_transition()
- Create transition network
-
rp()
- Create a Distance Matrix
-
rp_cl()
- Fast (C)RQA (command line crp)
-
rp_copy_attributes()
- Copy Matrix Attributes
-
rp_diagProfile()
- Diagonal Recurrence Profile
-
rp_lineDist()
- Line length distributions
-
rp_measures()
- Get (C)RQA measures based on a binary matrix
-
rp_nzdiags()
- rp_nzdiags
-
rp_plot()
- Plot (thresholded) distance matrix as a recurrence plot
-
rp_size()
- rp_size
-
rqa_fast()
- Fast rqa
-
rqa_lineDist()
- Fast line dist
-
rqa_measures()
- Fast RQA
-
rqa_par()
experimental - Massively Parallel RQA analysis
-
rqa_stitchRows()
- Stitch rows
-
sa2fd_dfa()
- Informed Dimension estimate from DFA slope (H)
-
sa2fd_psd()
- Informed Dimension estimate from Spectral Slope (aplha)
-
sa2fd_sda()
- Informed Dimension estimate from SDA slope.
-
setTheiler()
- Set theiler window on a distance matrix or recurrence matrix.
-
set_command_line_rp()
- Set command line RQA executable
-
ts_center()
- Center a vector
-
ts_changeindex()
- Find change indices
-
ts_checkfix()
- Check and/or Fix a vector
-
ts_coarsegrain()
- Course grain a time series
-
ts_cp()
- Change Profile
-
ts_detrend()
- Detrend a time series
-
ts_diff()
- Derivative of time series
-
ts_discrete()
- Discrete representation
-
ts_duration()
- Time series to Duration series
-
ts_embed()
- Delay embedding of a time series
-
ts_integrate()
- Create a timeseries profile
-
ts_levels()
- Detect levels in time series
-
ts_peaks()
- Find Peaks or Wells
-
ts_permtest_block()
- Permutation Test: Block Randomisation
-
ts_permtest_transmat()
- Permutation Test: Transition Matrix
-
ts_rasterize()
- Turn a 1D time series vector into a 2D curve
-
ts_sd()
- Standard Deviation estimates
-
ts_slice()
- Slice a Matrix
-
ts_slope()
- Calculate Kendall's tau in sliding window or around change point.
-
ts_slopes()
- Detect slopes in time series
-
ts_standardise()
- Standardise a vector
-
ts_sumorder()
- Adjust time series by summation order
-
ts_symbolic()
- Symbolic representation
-
ts_transmat()
- Transition matrix
-
ts_trimfill()
- Trim or Fill Vectors
-
ts_windower()
- Get sliding window indices
-
var_win()
- Windowed variance