Skip to contents

Iteratively differenced series up to order. The same length as the original series is recovered by calculating the mean of two vectors for each iteration: One with a duplicated first value and one with a duplicated last value.

Usage

ts_diff(
  y,
  order = 1,
  addColumns = TRUE,
  keepDerivatives = FALSE,
  maskEdges = NULL,
  silent = TRUE
)

Arguments

y

A timeseries object or numeric vector or a matrix in which columns are variables and rows are numeric values observed over time.

order

How many times should the difference iteration be applied? (default = 1)

addColumns

Should the derivative(s) be added to the input vector/matrix as columns? (default = TRUE)

keepDerivatives

If TRUE and order > 1, all derivatives from 1:order will be returned as a matrix )default = FALSE)

maskEdges

Mask the values at the edges of the derivatives by any numeric type that is not NULL (default = NULL)

silent

Silent-ish mode

Value

Depending on the setting of addColumns and the object type passed as y, a vector of equal length as y iteratively differenced by order times; a matrix with derivatives, or a matrix with original(s) and derivative(s).

Note

The values at the edges of the derivatives represent endpoint averages and should be excluded from any subsequent analyses. Set argument maskEdges to a value of your choice.

Examples


# Here's an interesting numeric vector
y<-c(1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368)

# Return the first order derivative as a vector
ts_diff(y=y,addColumns=FALSE)
#>  [1]     0.0     0.5     1.0     1.5     2.5     4.0     6.5    10.5    17.0
#> [10]    27.5    44.5    72.0   116.5   188.5   305.0   493.5   798.5  1292.0
#> [19]  2090.5  3382.5  5473.0  8855.5 14328.5 17711.0

# Return original and derivative as a matrix
plot(stats::ts(ts_diff(y=y, addColumns=TRUE)))


# Works on multivariate data objects with mixed variable types
df <- data.frame(x=letters, y=1:26, z=sin(1:26))

# Returns only derivatives of the numeric colunmns
ts_diff(y=df,addColumns=FALSE)
#>    y_d1         z_d1
#> 1     1  0.067826442
#> 2     1 -0.350175488
#> 3     1 -0.833049961
#> 4     1 -0.550022141
#> 5     1  0.238693499
#> 6     1  0.807955437
#> 7     1  0.634386872
#> 8     1 -0.122434057
#> 9     1 -0.766689679
#> 10    1 -0.706054346
#> 11    1  0.003724096
#> 12    1  0.710078622
#> 13    1  0.763590137
#> 14    1  0.115060402
#> 15    1 -0.639255336
#> 16    1 -0.805842666
#> 17    1 -0.231541965
#> 18    1  0.555637351
#> 19    1  0.831966249
#> 20    1  0.343389214
#> 21    1 -0.460898280
#> 22    1 -0.841438021
#> 23    1 -0.448363526
#> 24    1  0.356934327
#> 25    1  0.834068406
#> 26    1  0.894910201

# Returns original data with derivatives of the numeric columns
ts_diff(y=df, order=4, addColumns=TRUE)
#>     y            z y_d4         z_d4
#> 1   1  0.841470985    0  0.191475573
#> 2   2  0.909297427    0  0.262795618
#> 3   3  0.141120008    0  0.115208378
#> 4   4 -0.756802495    0 -0.331083744
#> 5   5 -0.958924275    0 -0.480773913
#> 6   6 -0.279415498    0 -0.140089980
#> 7   7  0.656986599    0  0.329392034
#> 8   8  0.989358247    0  0.496032531
#> 9   9  0.412118485    0  0.206623007
#> 10 10 -0.544021111    0 -0.272754758
#> 11 11 -0.999990207    0 -0.501363056
#> 12 12 -0.536572918    0 -0.269020472
#> 13 13  0.420167037    0  0.210658292
#> 14 14  0.990607356    0  0.496658795
#> 15 15  0.650287840    0  0.326033492
#> 16 16 -0.287903317    0 -0.144345500
#> 17 17 -0.961397492    0 -0.482013905
#> 18 18 -0.750987247    0 -0.376520948
#> 19 19  0.149877210    0  0.075143632
#> 20 20  0.912945251    0  0.457721503
#> 21 21  0.836655639    0  0.419472335
#> 22 22 -0.008851309    0 -0.004437763
#> 23 23 -0.846220404    0 -0.380449507
#> 24 24 -0.905578362    0 -0.303830690
#> 25 25 -0.132351750    0 -0.021523512
#> 26 26  0.762558450    0  0.082040944

# Plot logistic S-curve and derivatives 1 to 3
S <- stats::plogis(seq(-5,5,.1))
plot(stats::ts(ts_diff(S, order=3, keepDerivatives = TRUE)))
abline(v=which(seq(-5,5,.1)==0), col= "red3", lwd=3)


# Plot again, but with masked edges
(maskEdge <- ts_diff(S, order=3, keepDerivatives = TRUE, maskEdges = NA))
#>              S1        S1_d1         S1_d2         S1_d3
#> 1   0.006692851           NA            NA            NA
#> 2   0.007391541 0.0007348601            NA            NA
#> 3   0.008162571 0.0008108787  7.987762e-05            NA
#> 4   0.009013299 0.0008946154  8.797167e-05  8.486490e-06
#> 5   0.009951802 0.0009868220  9.685060e-05  9.305569e-06
#> 6   0.010986943 0.0010883166  1.065828e-04  1.019515e-05
#> 7   0.012128435 0.0011999876  1.172409e-04  1.115939e-05
#> 8   0.013386918 0.0013227984  1.289016e-04  1.220225e-05
#> 9   0.014774032 0.0014577908  1.416454e-04  1.332731e-05
#> 10  0.016302499 0.0016060891  1.555562e-04  1.453764e-05
#> 11  0.017986210 0.0017689032  1.707207e-04  1.583556e-05
#> 12  0.019840306 0.0019475305  1.872273e-04  1.722237e-05
#> 13  0.021881271 0.0021433578  2.051654e-04  1.869804e-05
#> 14  0.024127021 0.0023578613  2.246234e-04  2.026085e-05
#> 15  0.026596994 0.0025926047  2.456871e-04  2.190694e-05
#> 16  0.029312231 0.0028492356  2.684373e-04  2.362981e-05
#> 17  0.032295465 0.0031294793  2.929467e-04  2.541974e-05
#> 18  0.035571189 0.0034351290  3.192768e-04  2.726316e-05
#> 19  0.039165723 0.0037680328  3.474731e-04  2.914192e-05
#> 20  0.043107255 0.0041300752  3.775606e-04  3.103251e-05
#> 21  0.047425873 0.0045231541  4.095381e-04  3.290530e-05
#> 22  0.052153563 0.0049491514  4.433712e-04  3.472367e-05
#> 23  0.057324176 0.0054098965  4.789854e-04  3.644327e-05
#> 24  0.062973356 0.0059071222  5.162577e-04  3.801125e-05
#> 25  0.069138420 0.0064424120  5.550079e-04  3.936576e-05
#> 26  0.075858180 0.0070171381  5.949893e-04  4.043560e-05
#> 27  0.083172696 0.0076323905  6.358791e-04  4.114027e-05
#> 28  0.091122961 0.0082888963  6.772698e-04  4.139048e-05
#> 29  0.099750489 0.0089869301  7.186601e-04  4.108922e-05
#> 30  0.109096821 0.0097262165  7.594482e-04  4.013371e-05
#> 31  0.119202922 0.0105058266  7.989275e-04  3.841807e-05
#> 32  0.130108474 0.0113240714  8.362844e-04  3.583714e-05
#> 33  0.141851065 0.0121783954  8.706018e-04  3.229131e-05
#> 34  0.154465265 0.0130652750  9.008670e-04  2.769244e-05
#> 35  0.167981615 0.0139801294  9.259867e-04  2.197080e-05
#> 36  0.182425524 0.0149172483  9.448086e-04  1.508273e-05
#> 37  0.197816111 0.0158697466  9.561521e-04  7.018734e-06
#> 38  0.214165017 0.0168295525  9.588461e-04 -2.188584e-06
#> 39  0.231475217 0.0177874387  9.517750e-04 -1.245735e-05
#> 40  0.249739894 0.0187331024  9.339314e-04 -2.365090e-05
#> 41  0.268941421 0.0196553015  9.044732e-04 -3.557475e-05
#> 42  0.289050497 0.0205420488  8.627819e-04 -4.797690e-05
#> 43  0.310025519 0.0213808652  8.085193e-04 -6.055212e-05
#> 44  0.331812228 0.0221590875  7.416776e-04 -7.295077e-05
#> 45  0.354343694 0.0228642205  6.626178e-04 -8.479214e-05
#> 46  0.377540669 0.0234843231  5.720934e-04 -9.568182e-05
#> 47  0.401312340 0.0240084072  4.712542e-04 -1.052323e-04
#> 48  0.425557483 0.0244268314  3.616287e-04 -1.130853e-04
#> 49  0.450166003 0.0247316647  2.450836e-04 -1.189337e-04
#> 50  0.475020813 0.0249169987  1.237614e-04 -1.225418e-04
#> 51  0.500000000 0.0249791875  6.938894e-17 -1.237614e-04
#> 52  0.524979187 0.0249169987 -1.237614e-04 -1.225418e-04
#> 53  0.549833997 0.0247316647 -2.450836e-04 -1.189337e-04
#> 54  0.574442517 0.0244268314 -3.616287e-04 -1.130853e-04
#> 55  0.598687660 0.0240084072 -4.712542e-04 -1.052323e-04
#> 56  0.622459331 0.0234843231 -5.720934e-04 -9.568182e-05
#> 57  0.645656306 0.0228642205 -6.626178e-04 -8.479214e-05
#> 58  0.668187772 0.0221590875 -7.416776e-04 -7.295077e-05
#> 59  0.689974481 0.0213808652 -8.085193e-04 -6.055212e-05
#> 60  0.710949503 0.0205420488 -8.627819e-04 -4.797690e-05
#> 61  0.731058579 0.0196553015 -9.044732e-04 -3.557475e-05
#> 62  0.750260106 0.0187331024 -9.339314e-04 -2.365090e-05
#> 63  0.768524783 0.0177874387 -9.517750e-04 -1.245735e-05
#> 64  0.785834983 0.0168295525 -9.588461e-04 -2.188584e-06
#> 65  0.802183889 0.0158697466 -9.561521e-04  7.018734e-06
#> 66  0.817574476 0.0149172483 -9.448086e-04  1.508273e-05
#> 67  0.832018385 0.0139801294 -9.259867e-04  2.197080e-05
#> 68  0.845534735 0.0130652750 -9.008670e-04  2.769244e-05
#> 69  0.858148935 0.0121783954 -8.706018e-04  3.229131e-05
#> 70  0.869891526 0.0113240714 -8.362844e-04  3.583714e-05
#> 71  0.880797078 0.0105058266 -7.989275e-04  3.841807e-05
#> 72  0.890903179 0.0097262165 -7.594482e-04  4.013371e-05
#> 73  0.900249511 0.0089869301 -7.186601e-04  4.108922e-05
#> 74  0.908877039 0.0082888963 -6.772698e-04  4.139048e-05
#> 75  0.916827304 0.0076323905 -6.358791e-04  4.114027e-05
#> 76  0.924141820 0.0070171381 -5.949893e-04  4.043560e-05
#> 77  0.930861580 0.0064424120 -5.550079e-04  3.936576e-05
#> 78  0.937026644 0.0059071222 -5.162577e-04  3.801125e-05
#> 79  0.942675824 0.0054098965 -4.789854e-04  3.644327e-05
#> 80  0.947846437 0.0049491514 -4.433712e-04  3.472367e-05
#> 81  0.952574127 0.0045231541 -4.095381e-04  3.290530e-05
#> 82  0.956892745 0.0041300752 -3.775606e-04  3.103251e-05
#> 83  0.960834277 0.0037680328 -3.474731e-04  2.914192e-05
#> 84  0.964428811 0.0034351290 -3.192768e-04  2.726316e-05
#> 85  0.967704535 0.0031294793 -2.929467e-04  2.541974e-05
#> 86  0.970687769 0.0028492356 -2.684373e-04  2.362981e-05
#> 87  0.973403006 0.0025926047 -2.456871e-04  2.190694e-05
#> 88  0.975872979 0.0023578613 -2.246234e-04  2.026085e-05
#> 89  0.978118729 0.0021433578 -2.051654e-04  1.869804e-05
#> 90  0.980159694 0.0019475305 -1.872273e-04  1.722237e-05
#> 91  0.982013790 0.0017689032 -1.707207e-04  1.583556e-05
#> 92  0.983697501 0.0016060891 -1.555562e-04  1.453764e-05
#> 93  0.985225968 0.0014577908 -1.416454e-04  1.332731e-05
#> 94  0.986613082 0.0013227984 -1.289016e-04  1.220225e-05
#> 95  0.987871565 0.0011999876 -1.172409e-04  1.115939e-05
#> 96  0.989013057 0.0010883166 -1.065828e-04  1.019515e-05
#> 97  0.990048198 0.0009868220 -9.685060e-05  9.305569e-06
#> 98  0.990986701 0.0008946154 -8.797167e-05  8.486490e-06
#> 99  0.991837429 0.0008108787 -7.987762e-05            NA
#> 100 0.992608459 0.0007348601            NA            NA
#> 101 0.993307149           NA            NA            NA
plot(stats::ts(maskEdge))
abline(v=which(seq(-5,5,.1)==0), col= "red3", lwd=3)