Conversion formula: Detrended Fluctuation Analysis (DFA) estimate of the Hurst exponent (a self-affinity parameter sa) to an informed estimate of the (fractal) dimension (FD).

sa2fd_dfa(sa, ...)

Arguments

sa

Self-Afinity parameter estimate based on DFA slope (e.g., fd_sda())).

...

Other arguments

Value

An informed estimate of the Fractal Dimension, see Hasselman(2013) for details.

Details

The DFA slope (H) will be converted to a dimension estimate using:

$$D_{DFA}\approx 2-(\tanh(\log(3)*sa)) $$

References

Hasselman, F. (2013). When the blind curve is finite: dimension estimation and model inference based on empirical waveforms. Frontiers in Physiology, 4, 75. https://doi.org/10.3389/fphys.2013.00075

Author

Fred Hasselman