Find a fixed or optimal radius.
Usage
est_radius(
RM = NULL,
y1 = NULL,
y2 = NULL,
emLag = NA,
emDim = NA,
doEmbed = TRUE,
method = "Euclidean",
type = c("fixed", "optimal")[1],
startRadius = NULL,
eachRadius = 1,
targetMeasure = c("RR", "DET", "LAM", "T1", "all")[1],
targetValue = 0.05,
tol = 0.01,
maxIter = 100,
theiler = NA,
histIter = FALSE,
noiseLevel = 0.75,
noiseType = c("normal", "uniform")[1],
plotROC = FALSE,
standardise = c("mean.sd", "median.mad", "none")[3],
radiusOnFail = c("tiny", "huge", "percentile")[1],
silent = FALSE
)Arguments
- RM
Unthresholded Recurrence Matrix
- y1
A numeric vector or time series
- y2
A numeric vector or time series for cross recurrence
- emLag
The embedding lag
- emDim
The embedding dimensions
- doEmbed
If
FALSE, a distance matrix will be returned that is not embedded byemDimandemLag(Multidimensional RQA). Ify1and/ory2are data frames, the columns will be used as the state space dimensions (default =TRUE)- method
Distance measure to use. Any option that is valid for argument
methodofproxy::dist(). Typeproxy::pr_DB$get_entries()to see a list of all the options. Common methods are:"Euclidean", "Manhattan", "Minkowski", "Chebysev"(or the same but shorter:"L2","L1","Lp", "max"distance). To use the shape based distance for phase-based recurrence use"SBD"(default ="Euclidean")- type
Either
"fixed"(default) or"optimal","fixed"will search for a radius that is close to the value for thetargetMeasureintargetValue,"optimal"will optimise the radius for thetargetMeasure,targetValueis ignored.- startRadius
If
type = "fixed"this is the starting value for the radius (default = percentile of unique distances in RM given bytargetValue). Iftype = "optimal"this will be a range of radius values (in normalised SD units) that will be considered (default =seq(0,2,by=.01))- eachRadius
If
type = "optimal"this is the number of signal and noise series that will be generated for each level instartRadius(default =1)- targetMeasure
If
type = "optimal", it must be a character vector indicating which recurrence measure to optimise the radius for, options are "RR" (default), "DET", "LAM", "T1", and "all". The optiontargetMeasure = "all"will report all the optimal values obtained from one realisation ofstartRadius * eachRadiussignal and noise series.- targetValue
When argument
typeis set to "fixed", the value represents the target value for the measure intargetMeasure(default =RR = .05).- tol
Tolerance for achieving
targetValuefortargetMeasure(default =0.01)- maxIter
If
type = "fixed": Maximum number of iterations to reach targetValue.- theiler
Size of theiler window (default
0)- histIter
Return iteration history? (default =
FALSE)- noiseLevel
Noise level to construct the
signal + noiseLevel *\(N(\mu=0,\sigma=1)\) (default =0.75)- noiseType
Type
- plotROC
Generates an ROC plot if
type = "optimal"- standardise
Standardise
yiftype == "optimal"- radiusOnFail
Radius to return when search fails
"tiny" = 0 + ,Machine.double.eps, this will likely cause a matrix full of zeros."huge" = 1 + max. distance in RM, which will give a matrix full of ones,"percentile" = quantile(RM, prob = targetValue) of distances greater than 0.- silent
Silent-ish
Value
A dataframe listing settings used to search for the radius, the radius found given the settings and the recurrence rate produced by the radius (either 1 row or the entire iteration history)
See also
Other Estimate Recurrence Parameters:
est_emDim(),
est_emLag(),
est_parameters(),
est_parameters_roc(),
est_radius_rqa()
