2D Boxcount for 1D signal
Usage
fd_boxcount2D(
y = NA,
unitSquare = TRUE,
image2D = NA,
resolution = 1,
removeTrend = FALSE,
polyOrder = 1,
standardise = c("none", "mean.sd", "median.mad")[1],
adjustSumOrder = FALSE,
scaleMin = 0,
scaleMax = floor(log2(NROW(y) * resolution)),
scaleS = NA,
dataMin = 2^(scaleMin + 1),
maxData = 2^(scaleMax - 1),
doPlot = FALSE,
returnPlot = FALSE,
returnPLAW = FALSE,
returnInfo = FALSE,
returnLocalScaling = FALSE,
silent = FALSE,
noTitle = FALSE,
tsName = "y"
)
Arguments
- y
A numeric vector or time series object.
- unitSquare
Create unit square image of
y
? This is required for estimating FD of time series (default =TRUE
)- image2D
A matrix representing a 2D image, argument
y
andunitSquare
will be ignored (default =NA
)- resolution
The resolution used to embed the timeseries in 2D, a factor by which the dimensions the matrix will be multiplied (default =
1
)- removeTrend
If
TRUE
, will call ts_detrend ony
(default =FALSE
)- polyOrder
Order of polynomial trend to remove if
removeTrend =
TRUE“- standardise
Standardise
y
usingts_standardise()
withadjustN = FALSE
(default =none
)- adjustSumOrder
Adjust the order of the time series (by summation or differencing), based on the global scaling exponent, see e.g. https://www.frontiersin.org/files/Articles/23948/fphys-03-00141-r2/image_m/fphys-03-00141-t001.jpgIhlen (2012) (default = `FALSE“)
- scaleMin
Minimium scale value (as
2^scale
) to use (default =0
)- scaleMax
Maximum scale value (as
2^scale
) to use (default =max
oflog2(nrows)
andlog2(ncols)
)- scaleS
If not
NA
, pass a numeric vector listing the scales (as a power of2
) on which to evaluate the boxcount. ArgumentsscaleMax
,scaleMin
, andscaleResolution
will be ignored (default =NA
)- dataMin
Minimum number of time/data points inside a box for it to be included in the slope estimation (default =
2^scaleMin
)- maxData
Maximum number of time/data points inside a box for it to be included in the slope estimation (default =
2^scaleMax
)- doPlot
Return the log-log scale versus bulk plot with linear fit (default =
TRUE
).- returnPlot
Return ggplot2 object (default =
FALSE
)- returnPLAW
Return the power law data (default =
FALSE
)- returnInfo
Return all the data used in DFA (default =
FALSE
)- returnLocalScaling
Return estimates of FD for each scale
- silent
Silent-ish mode (default =
TRUE
)- noTitle
Do not generate a title (only the subtitle)
- tsName
Name of y added as a subtitle to the plot (default =
y
)
Note
This function was inspired by the Matlab
function boxcount.m
written by F. Moisy. Fred Hasselman
adapted the function for R
for the purpose of the unit square boxcount analysis for 1D time series. The original Matlab toolbox has more options and contains more functions (e.g. 1D
and 3D
boxcount).
Examples
fd_boxcount2D(y = rnorm(100))
#>
#>
#> Raterizing time series... Done!
#> Performing 2D boxcount...Done!
#>
#> ~~~o~~o~~casnet~~o~~o~~~
#>
#> 2D boxcount of 1D curve
#>
#> Full range (n = 9)
#> FD = 1.52
#>
#> Exclude scales (n = 7)
#> FD = 1.52
#>
#> ~~~o~~o~~casnet~~o~~o~~~