Skip to contents

Calculates the Recurrence Rate versus Recurrence Time power-law

Usage

rn_strengthDist(g, mode = c("in", "out", "all")[3], doPlot = TRUE)

Arguments

g

an igraph object representing a weighted Recurrence Network

mode

Evaluate the "in", "out" degree, or "all" edges (default = "all")

doPlot

Plot the scaling relation? (default = TRUE)

Value

A data frame with local vertex strength and vertex degree, including

Examples


y  <- rnorm(100)
RN <- rn(y, emLag=1, emDim=3, emRad=NA, weighted = TRUE, weightedBy = "rt", returnGraph = TRUE)
rn_strengthDist(RN$g)

#>    xDegree yStrength xDegree_log10 yStrength_log10 PowerLaw PowerLawExponent
#> 1        4       148     0.6020600       2.1702617 2.044780          1.17196
#> 2        4        89     0.6020600       1.9493900 2.044780          1.17196
#> 3        2       138     0.3010300       2.1398791 1.691985          1.17196
#> 4        3       121     0.4771213       2.0827854 1.898357          1.17196
#> 5        4       180     0.6020600       2.2552725 2.044780          1.17196
#> 6        4       213     0.6020600       2.3283796 2.044780          1.17196
#> 7        4       203     0.6020600       2.3074960 2.044780          1.17196
#> 8        2        49     0.3010300       1.6901961 1.691985          1.17196
#> 9       10       391     1.0000000       2.5921768 2.511150          1.17196
#> 10       1         9     0.0000000       0.9542425 1.339190          1.17196
#> 11       1         9     0.0000000       0.9542425 1.339190          1.17196
#> 12       3       123     0.4771213       2.0899051 1.898357          1.17196
#> 13       3        69     0.4771213       1.8388491 1.898357          1.17196
#> 14       1        26     0.0000000       1.4149733 1.339190          1.17196
#> 15       3        57     0.4771213       1.7558749 1.898357          1.17196
#> 16       9       327     0.9542425       2.5145478 2.457524          1.17196
#> 17      11       375     1.0413927       2.5740313 2.559660          1.17196
#> 18       1         9     0.0000000       0.9542425 1.339190          1.17196
#> 19       2        30     0.3010300       1.4771213 1.691985          1.17196
#> 20       4        64     0.6020600       1.8061800 2.044780          1.17196
#> 21       7       294     0.8450980       2.4683473 2.329611          1.17196
#> 22      11       448     1.0413927       2.6512780 2.559660          1.17196
#> 23      12       503     1.0791812       2.7015680 2.603947          1.17196
#> 24       9       355     0.9542425       2.5502284 2.457524          1.17196
#> 25       4       114     0.6020600       2.0569049 2.044780          1.17196
#> 26       4       151     0.6020600       2.1789769 2.044780          1.17196
#> 27       7       280     0.8450980       2.4471580 2.329611          1.17196
#> 28       7       244     0.8450980       2.3873898 2.329611          1.17196
#> 29       4       103     0.6020600       2.0128372 2.044780          1.17196
#> 30       1         8     0.0000000       0.9030900 1.339190          1.17196
#> 31       1        25     0.0000000       1.3979400 1.339190          1.17196
#> 32      11       371     1.0413927       2.5693739 2.559660          1.17196
#> 33       7       181     0.8450980       2.2576786 2.329611          1.17196
#> 34       6       207     0.7781513       2.3159703 2.251152          1.17196
#> 35      10       346     1.0000000       2.5390761 2.511150          1.17196
#> 36       9       247     0.9542425       2.3926970 2.457524          1.17196
#> 37       5        94     0.6989700       1.9731279 2.158355          1.17196
#> 38       1        36     0.0000000       1.5563025 1.339190          1.17196
#> 39       2        54     0.3010300       1.7323938 1.691985          1.17196
#> 40       1        51     0.0000000       1.7075702 1.339190          1.17196
#> 41       1        29     0.0000000       1.4623980 1.339190          1.17196
#> 42       4       150     0.6020600       2.1760913 2.044780          1.17196
#> 43       3       120     0.4771213       2.0791812 1.898357          1.17196
#> 44       3        91     0.4771213       1.9590414 1.898357          1.17196
#> 45       9       157     0.9542425       2.1958997 2.457524          1.17196
#> 46      11       224     1.0413927       2.3502480 2.559660          1.17196
#> 47      15       321     1.1760913       2.5065050 2.717522          1.17196
#> 48      14       336     1.1461280       2.5263393 2.682406          1.17196
#> 49      10       193     1.0000000       2.2855573 2.511150          1.17196
#> 50       1        19     0.0000000       1.2787536 1.339190          1.17196
#> 51       1        19     0.0000000       1.2787536 1.339190          1.17196
#> 52       2        28     0.3010300       1.4471580 1.691985          1.17196
#> 53       4        66     0.6020600       1.8195439 2.044780          1.17196
#> 54       1        30     0.0000000       1.4771213 1.339190          1.17196
#> 55       2         4     0.3010300       0.6020600 1.691985          1.17196
#> 56       9       172     0.9542425       2.2355284 2.457524          1.17196
#> 57       9       199     0.9542425       2.2988531 2.457524          1.17196
#> 58      11       227     1.0413927       2.3560259 2.559660          1.17196
#> 59       1         6     0.0000000       0.7781513 1.339190          1.17196
#> 60       1        28     0.0000000       1.4471580 1.339190          1.17196
#> 61      14       354     1.1461280       2.5490033 2.682406          1.17196
#> 62      13       263     1.1139434       2.4199557 2.644687          1.17196
#> 63       4        97     0.6020600       1.9867717 2.044780          1.17196
#> 64       1         6     0.0000000       0.7781513 1.339190          1.17196
#> 65       1        29     0.0000000       1.4623980 1.339190          1.17196
#> 66       2        69     0.3010300       1.8388491 1.691985          1.17196
#> 67       5       186     0.6989700       2.2695129 2.158355          1.17196
#> 68       5       186     0.6989700       2.2695129 2.158355          1.17196
#> 69       3       141     0.4771213       2.1492191 1.898357          1.17196
#> 70       2       132     0.3010300       2.1205739 1.691985          1.17196
#> 71       1        52     0.0000000       1.7160033 1.339190          1.17196
#> 72       3       145     0.4771213       2.1613680 1.898357          1.17196
#> 73       4       195     0.6020600       2.2900346 2.044780          1.17196
#> 74       5       260     0.6989700       2.4149733 2.158355          1.17196
#> 75      13       400     1.1139434       2.6020600 2.644687          1.17196
#> 76      13       331     1.1139434       2.5198280 2.644687          1.17196
#> 77       7       305     0.8450980       2.4842998 2.329611          1.17196
#> 78       8       240     0.9030900       2.3802112 2.397575          1.17196
#> 79       7       269     0.8450980       2.4297523 2.329611          1.17196
#> 80      13       495     1.1139434       2.6946052 2.644687          1.17196
#> 81      16       528     1.2041200       2.7226339 2.750370          1.17196
#> 82      15       481     1.1760913       2.6821451 2.717522          1.17196
#> 83       3       109     0.4771213       2.0374265 1.898357          1.17196
#> 84       2        52     0.3010300       1.7160033 1.691985          1.17196
#> 85       4       273     0.6020600       2.4361626 2.044780          1.17196
#> 86       3       129     0.4771213       2.1105897 1.898357          1.17196
#> 87       2        82     0.3010300       1.9138139 1.691985          1.17196