Skip to contents

Calculates the Recurrence Rate versus Recurrence Time power-law

Usage

rn_strengthDist(g, mode = c("in", "out", "all")[3], doPlot = TRUE)

Arguments

g

an igraph object representing a weighted Recurrence Network

mode

Evaluate the "in", "out" degree, or "all" edges (default = "all")

doPlot

Plot the scaling relation? (default = TRUE)

Value

A data frame with local vertex strength and vertex degree, including

Examples


y  <- rnorm(100)
RN <- rn(y, emLag=1, emDim=3, emRad=NA, weighted = TRUE, weightedBy = "rt", returnGraph = TRUE)
rn_strengthDist(RN$g)

#>    xDegree yStrength xDegree_log10 yStrength_log10 PowerLaw PowerLawExponent
#> 1        3       125     0.4771213       2.0969100 1.990599         0.993944
#> 2        4       171     0.6020600       2.2329961 2.114781         0.993944
#> 3        3       136     0.4771213       2.1335389 1.990599         0.993944
#> 4        2       136     0.3010300       2.1335389 1.815574         0.993944
#> 5        1        31     0.0000000       1.4913617 1.516367         0.993944
#> 6        4       225     0.6020600       2.3521825 2.114781         0.993944
#> 7        6       350     0.7781513       2.5440680 2.289806         0.993944
#> 8        1        58     0.0000000       1.7634280 1.516367         0.993944
#> 9        1        58     0.0000000       1.7634280 1.516367         0.993944
#> 10       4       180     0.6020600       2.2552725 2.114781         0.993944
#> 11       4       141     0.6020600       2.1492191 2.114781         0.993944
#> 12       8       302     0.9030900       2.4800069 2.413988         0.993944
#> 13       1        23     0.0000000       1.3617278 1.516367         0.993944
#> 14       1        58     0.0000000       1.7634280 1.516367         0.993944
#> 15       4       187     0.6020600       2.2718416 2.114781         0.993944
#> 16       4       170     0.6020600       2.2304489 2.114781         0.993944
#> 17       4       131     0.6020600       2.1172713 2.114781         0.993944
#> 18      17       443     1.2304489       2.6464037 2.739364         0.993944
#> 19      19       643     1.2787536       2.8082110 2.787377         0.993944
#> 20      14       403     1.1461280       2.6053050 2.655554         0.993944
#> 21      15       442     1.1760913       2.6454223 2.685336         0.993944
#> 22      15       434     1.1760913       2.6374897 2.685336         0.993944
#> 23      17       439     1.2304489       2.6424645 2.739364         0.993944
#> 24      11       302     1.0413927       2.4800069 2.551453         0.993944
#> 25       7       261     0.8450980       2.4166405 2.356347         0.993944
#> 26       1        65     0.0000000       1.8129134 1.516367         0.993944
#> 27       3       105     0.4771213       2.0211893 1.990599         0.993944
#> 28       1        23     0.0000000       1.3617278 1.516367         0.993944
#> 29       1        52     0.0000000       1.7160033 1.516367         0.993944
#> 30      18       409     1.2552725       2.6117233 2.764038         0.993944
#> 31       6       182     0.7781513       2.2600714 2.289806         0.993944
#> 32       2        35     0.3010300       1.5440680 1.815574         0.993944
#> 33       2        51     0.3010300       1.7075702 1.815574         0.993944
#> 34       1        41     0.0000000       1.6127839 1.516367         0.993944
#> 35       1         3     0.0000000       0.4771213 1.516367         0.993944
#> 36       2        48     0.3010300       1.6812412 1.815574         0.993944
#> 37      11       243     1.0413927       2.3856063 2.551453         0.993944
#> 38      17       436     1.2304489       2.6394865 2.739364         0.993944
#> 39       9       226     0.9542425       2.3541084 2.464831         0.993944
#> 40       4       136     0.6020600       2.1335389 2.114781         0.993944
#> 41       2        59     0.3010300       1.7708520 1.815574         0.993944
#> 42       1        18     0.0000000       1.2552725 1.516367         0.993944
#> 43       4       167     0.6020600       2.2227165 2.114781         0.993944
#> 44      14       373     1.1461280       2.5717088 2.655554         0.993944
#> 45      10       280     1.0000000       2.4471580 2.510311         0.993944
#> 46       4       125     0.6020600       2.0969100 2.114781         0.993944
#> 47       9       263     0.9542425       2.4199557 2.464831         0.993944
#> 48      13       322     1.1139434       2.5078559 2.623564         0.993944
#> 49      11       315     1.0413927       2.4983106 2.551453         0.993944
#> 50       7       143     0.8450980       2.1553360 2.356347         0.993944
#> 51       1        58     0.0000000       1.7634280 1.516367         0.993944
#> 52       2        68     0.3010300       1.8325089 1.815574         0.993944
#> 53       3        89     0.4771213       1.9493900 1.990599         0.993944
#> 54       2        19     0.3010300       1.2787536 1.815574         0.993944
#> 55       2        24     0.3010300       1.3802112 1.815574         0.993944
#> 56      14       358     1.1461280       2.5538830 2.655554         0.993944
#> 57       4       109     0.6020600       2.0374265 2.114781         0.993944
#> 58       1        58     0.0000000       1.7634280 1.516367         0.993944
#> 59       1        10     0.0000000       1.0000000 1.516367         0.993944
#> 60       5       201     0.6989700       2.3031961 2.211104         0.993944
#> 61       9       254     0.9542425       2.4048337 2.464831         0.993944
#> 62      11       231     1.0413927       2.3636120 2.551453         0.993944
#> 63      14       463     1.1461280       2.6655810 2.655554         0.993944
#> 64      11       463     1.0413927       2.6655810 2.551453         0.993944
#> 65      12       404     1.0791812       2.6063814 2.589013         0.993944
#> 66       4       170     0.6020600       2.2304489 2.114781         0.993944
#> 67       5       243     0.6989700       2.3856063 2.211104         0.993944
#> 68       6       275     0.7781513       2.4393327 2.289806         0.993944
#> 69       3       145     0.4771213       2.1613680 1.990599         0.993944
#> 70      16       700     1.2041200       2.8450980 2.713195         0.993944
#> 71      11       461     1.0413927       2.6637009 2.551453         0.993944
#> 72       7       342     0.8450980       2.5340261 2.356347         0.993944
#> 73       4       234     0.6020600       2.3692159 2.114781         0.993944
#> 74       4       320     0.6020600       2.5051500 2.114781         0.993944