Autocatalytic Growth: Iterating differential equations (maps)
growth_ac(
Y0 = 0.01,
r = 1,
k = 1,
N = 100,
type = c("driving", "damping", "logistic", "vanGeert")[1]
)
A timeseries object of length N.
Other autocatalytic growth functions:
growth_ac_cond()
# The logistic map in the chaotic regime
growth_ac(Y0 = 0.01, r = 4, type = "logistic")
#> Time Series:
#> Start = 1
#> End = 100
#> Frequency = 1
#> [1] 0.010000000 0.039600000 0.152127360 0.515938505 0.998983856 0.004060445
#> [7] 0.016175831 0.063656695 0.238418082 0.726299601 0.795153963 0.651536553
#> [13] 0.908146692 0.333665111 0.889330819 0.393686053 0.954789379 0.172666484
#> [19] 0.571411077 0.979601832 0.079928330 0.294159169 0.830518210 0.563030852
#> [25] 0.984108447 0.062556047 0.234571153 0.718190108 0.809572307 0.616659947
#> [31] 0.945561827 0.205898632 0.654017542 0.905114387 0.343529332 0.902067721
#> [37] 0.353366192 0.913994105 0.314435523 0.862263299 0.475061208 0.997512227
#> [43] 0.009926337 0.039311221 0.151063396 0.512972985 0.999326807 0.002690961
#> [49] 0.010734878 0.042478560 0.162696528 0.544905470 0.991933995 0.032003778
#> [55] 0.123918144 0.434249751 0.982707619 0.067973418 0.253412130 0.756777690
#> [61] 0.736260872 0.776723202 0.693697078 0.849925768 0.510207828 0.999583201
#> [67] 0.001666501 0.006654896 0.026442435 0.102972929 0.369478019 0.931856050
#> [73] 0.254001408 0.757938771 0.733870362 0.781218616 0.683664361 0.865069610
#> [79] 0.466896720 0.995616691 0.017456381 0.068606621 0.255599012 0.761072627
#> [85] 0.727364333 0.793221840 0.656083810 0.902551377 0.351809554 0.912158367
#> [91] 0.320501922 0.871121759 0.449074559 0.989626398 0.041063962 0.157510852
#> [97] 0.530804735 0.996204273 0.015125277 0.059586013