Search for FNN to get an optimal Embedding Dimension using by using nonlinearTseries::findAllNeighbours() in a loop.

fnn(y, emLag = 1, maxDim = 10, radius = sd(y)/10, number.boxes = NULL)

Arguments

y

A numeric vector or time series

emLag

Optimal embedding lag (delay), e.g., provided by an optimising algorithm. If NULL the lags based on the mutual information in lagMethods will be reported. If a numeric value representing a valid lag is passed, this value will be used to estimate the number of dimensions (default = NULL)

maxDim

Maximum number of embedding dimensions to consider (default = 10)

radius

Size of the neighbourhood: Every point smaller than the radius will be considered a near neighbour, see nonlinearTseries::findAllNeighbours() (default = sd(y)/10).

number.boxes

Integer representing number of boxes to to speed up neighbour search, if NULL an optimal number will be chosen nonlinearTseries::findAllNeighbours() (default = NULL).

Value

FNN curve