Search for FNN to get an optimal Embedding Dimension using by using nonlinearTseries::findAllNeighbours()
in a loop.
Usage
fnn(y, emLag = 1, maxDim = 10, radius = sd(y)/10, number.boxes = NULL)
Arguments
- y
A numeric vector or time series
- emLag
Optimal embedding lag (delay), e.g., provided by an optimising algorithm. If
NULL
the lags based on the mutual information inlagMethods
will be reported. If a numeric value representing a valid lag is passed, this value will be used to estimate the number of dimensions (default =NULL
)- maxDim
Maximum number of embedding dimensions to consider (default =
10
)- radius
Size of the neighbourhood: Every point smaller than the radius will be considered a near neighbour, see
nonlinearTseries::findAllNeighbours()
(default =sd(y)/10
).- number.boxes
Integer representing number of boxes to to speed up neighbour search, if
NULL
an optimal number will be chosennonlinearTseries::findAllNeighbours()
(default =NULL
).