Search for FNN to get an optimal Embedding Dimension using by using nonlinearTseries::findAllNeighbours() in a loop.
Usage
fnn(y, emLag = 1, maxDim = 10, radius = sd(y)/10, number.boxes = NULL)Arguments
- y
 A numeric vector or time series
- emLag
 Optimal embedding lag (delay), e.g., provided by an optimising algorithm. If
NULLthe lags based on the mutual information inlagMethodswill be reported. If a numeric value representing a valid lag is passed, this value will be used to estimate the number of dimensions (default =NULL)- maxDim
 Maximum number of embedding dimensions to consider (default =
10)- radius
 Size of the neighbourhood: Every point smaller than the radius will be considered a near neighbour, see
nonlinearTseries::findAllNeighbours()(default =sd(y)/10).- number.boxes
 Integer representing number of boxes to to speed up neighbour search, if
NULLan optimal number will be chosennonlinearTseries::findAllNeighbours()(default =NULL).
